

抜粋版

はじめてのLiDAR開発キット(Livox版)

~Livox LiDARを使って自動運転,3D地図,ドローンに活用~

開発編

スペクトラム・テクノロジー株式会社

https://spectrum-tech.co.jp

sales@spectrum-tech.co.jp

開発キット 目次

• ubuntu運用マニュアル			
• ul	buntuについて	<u>4</u>	
	nux基本コマンド	<u>4</u>	
	buntu基本操作	<u>6</u>	
• =	引常運用(ウイルススキャン、更新)	<u>7</u>	
• 開発	キット全体像	4 4 6 7 9	抜粋版のためページと一致し
1. /\	ード概要	<u>10</u>	ません
2. ソ	フト概要	<u>11</u>	
3. Au	utoware開発		
Aut	oware全体像	<u>12</u>	
Aut	oware基本		
1	lidar動作確認	<u>13</u>	
2 3 4 5 6 7	Rosbag記録、再生	13 16 18 19 20 26 28	
3	RQT表示	<u>18</u>	
4	地図作成	<u>19</u>	
<u>5</u>	自己位置推定	<u>20</u>	
<u>6</u>	物体検出	<u> 26</u>	
(7)	Autowareデモ1	<u>28</u>	
4. 31	D地図開発		
1	Livox_mapping	<u>30</u>	
2	Cloudcompare	<u>36</u>	

開発キット 目次

5.	そ	の他アプリ開発	ページ
	1	Livox detection sim	<u>46</u>
	2	Livox detection	<u>47</u>
	3	Livox lane detection	<u>48</u>
	4	Livox free space	<u>49</u>
	(5)	Livox relocalization	<u>50</u>
	6	horizon highway slam	<u>51</u>
	7	loam_livox	<u>52</u>
	8	Yolov3物体検出	<u>54</u>
	9	Apollo	<u>55</u>
	10	Lio_livox	<u>59</u>
6.	参	考	
	1	Drone搭載用lidar例	<u>60</u>

- 1. Ubuntuについて Linuxの中でも一番シェアの高いOSです。2004年にDebian系から派生。
- 2. Linux基本コマンド
 - ① システム関係
 - 起動:電源を入れると自動で起動します。
 - 再起動: \$ reboot又は、左上のメニューの「ゲストを再起動
 - 終了: \$ shutdown又は、左上のメニューの「ゲストをシャットダウン」
 - ログアウト \$ exitルートからログアウトします
 - 日本語/英語の入力切替:半角/全角のボタン(ESCボタンの下)

2. Linux基本コマンド

② ディレクトリ操作、コピー、移動、削除

masa@ubuntu:~\$cd /home/masa/Documents ディレクトリの切り替え

masa@ubuntu :/home/masa/Documents\$ Is ファイルとディレクトリの表示(表示したら操作したいファイルを右クリックでコピペして操作します

masa@ubuntu:~\$ cp ファイル名 ディレクトリ 配下のディレクトリのファイルを別のディレクトリへコピー

masa@ubuntu:~\$ mv ファイル名 ディレクトリ 配下のディレクトリのファイルを別のディレクトリへ移動

masa@ubuntu:~\$ rm ファイル名 ファイルの削除

便利な機能 rm -help てのコマンド共通(マイナスを2個とhelp) コマンドのオプションが分からない場合は、ヘルプで問い合わせる。すべ

③ ユーザ権限、プロセス他

スーパーユーザ(root)に切り替え、パスワードを入力 masa@ubuntu:~\$ su -

ルート権限で各種コマンドを実施します。 masa@Ubuntu:~\$ sudo

現状の動いているプロセスを表示 masa@ubuntu:~\$ ps a

特定のプロセスを強制終了 masa@ubuntu:~\$ kill

パッケージのインストールなどに使用 masa@ubuntu:~\$ apt-get install pkg

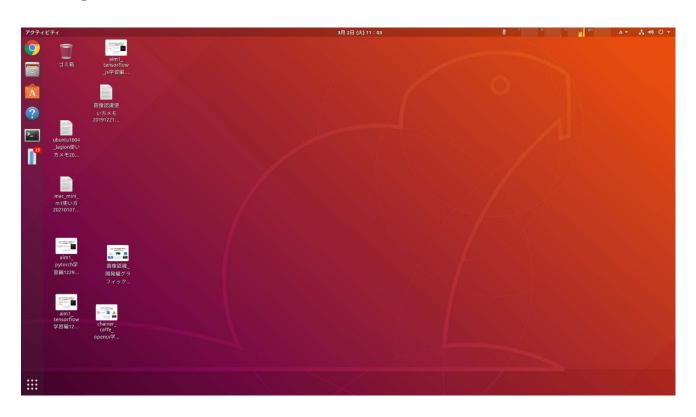
masa@ubuntu:~\$ date 日付、時間の設定を行います。

masa@ubuntu:~\$ leafpad /etc/network/interfaces インタフェースに記述してい内容を変更します。Viよりも使いや

すいです。

モジュール、usb、メモリ、HDDなどの表示

linuxのモジュールリスト表示 masa@ubuntu:~\$ Ismod


masa@ubuntu:~\$ Isusb usbのデバイス表示 masa@ubuntu:~\$ free -mt メモリ使用状態表示

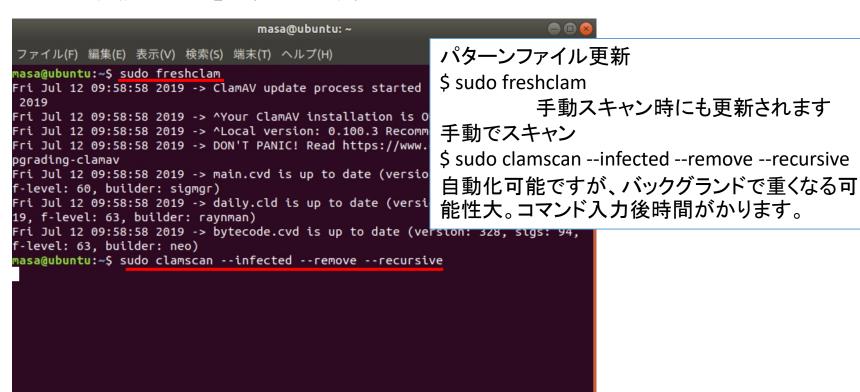
masa@ubuntu:~\$ df HDD(マイクロSD)の使用状態表示

- 3. 基本操作
 - ① 表示画面と内容

主に使用するもの

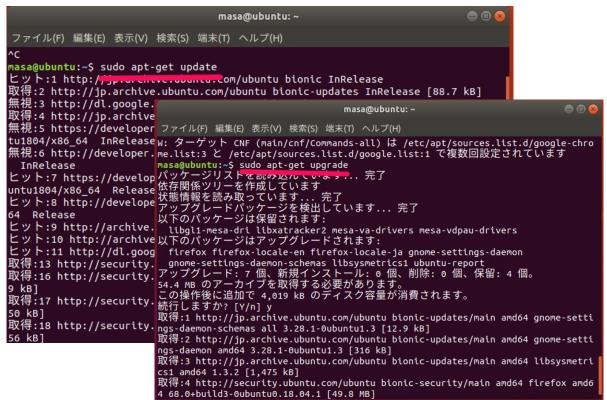
・ブラウザ: Chrome

・フォルダ: Document s内に必要なファイル があります。


・コマンド:コマンド画面 を立ち上げて、 python3のプログラム を動作させます。

4. 日常運用

- ① セキュリティ対策(アンチウイルス更新、スキャン)
 - アンチウイルス対策として無料のclamAVをインストールしてます。
 - 手動での運用を基本としてます。



4. 日常運用

- ② インストール済パッケージの更新リスト、アップグレード
 - Linuxの場合は、頻繁に更新が発生します。アップグレードを定期的に実施してください。
 - 更新前には、バックアップを取ることをお勧めします。特にアップグレードはまれに動作不良、戻せない状態が発生します。自己責任で実施してください。

更新リスト取得 \$ sudo apt-get update アップグレード実施 \$ sudo apt-get upgrade

LiDAR開発キット 全体像(Livox版)

1. ハードウエア概要

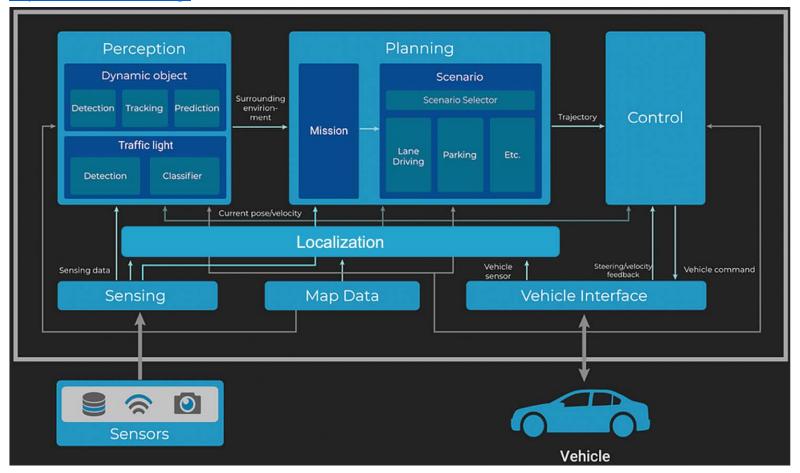
①必要なハードウエア仕様

ハードウエアの概要です。

区分		プロダクツ	メーカ	備考		
USBメモリ(livox版)		128GB USB3.0 livox関連ソフト				
お客様準備品						
PC本体	cpu	Intel i9, i7, amd Ryzen 9,7など cpu		GPUが搭載できるものに限り ます。		
	GPU	RTX30,20シリーズ	nvidia			
	メモリ	16GB以上				
	SSD	512GB以上				
LiDAR	Mid-70	Detection Range (@ 100 klx):260 m @ 80% reflectivity FOV:70.4° (Circular) Angular Precision (1σ):< 0.1° Beam Divergence:0.28° (Vertical) × 0.03° (Horizontal) Point Rate:100,000 points/s (first or strongest return)	Livox	弊社からの提供も可能です。 livox製の他の製品も対応 可能です。検証は、mid-70 で実施しました。		
	Avia	Detection Range (@ 0 klx):450 m @ 80% reflectivity FOV:Non-repetitve scanning pattern: 70.4° (Horizontal) × 77.2° (Vertical) Angular Precision (1 \sigma) :< 0.05° Beam Divergence:0.28° (Vertical) × 0.03° (Horizontal) Point Rate:240,000 points/s (first or strongest return)		10		

①ソフトウエア一覧

ソフトウエアの概要です。


- 弊社からのマニュア ルに基づいてインス トールします。
- OS,GPUは、お客様で 実施してください。

区分	ソフト名	バージョン	備考
OS	ubuntu	18.04 LTS	
GPU用	cuDNN	8.4.2+cuda11.4	cuda11ではautowareの一部 が動作しません。
プログラム言語	python3	3.6.9	
Livox関係	Livox-sdk	2.3.0	
	Livox-ros-driver	2.6.0	
	Livox-autoware-driver	Versionなし	
自動運転	Autoware	1.14	docker版で使用
	ROS	melodic	
	apollo	5.5	
コンテナ関連	Docker-ce	>19.03.5	
	Nvidia-driver	>465	
AI用プログラム	tensorflow	1.15	仮想化等で使用
各種アプリ	Livox_mapping, detection, cloudcompareなど多数		

3. Autoware開発 全体像(Autoware)

AutowareはLinuxとROSをベースとした自動運転システム用オープンソースソフトウェアです。名古屋大学、長崎大学、産総研による共同成果の一部として、自動運転の研究開発用途に無償で公開しました。レーザレーダ、カメラ、GNSSなどの環境センサを利用して、自車位置や周囲物体を認識しながら、カーナビから与えられたルート上を自律走行できます。https://www.autoware.org/

Autoware基本:lidar動作確認

https://github.com/Livox-SDK/livox autoware driver

Autoware起動: 毎回実施

cd /home/masa/Documents/lidar/livox autoware ws/livox autoware driver

./run livox.sh

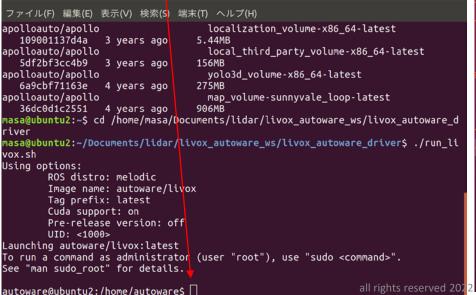
dockerに入り、autoware@ubuntu2:/home/autoware\$が起動

roslaunch runtime manager runtime manager.launch

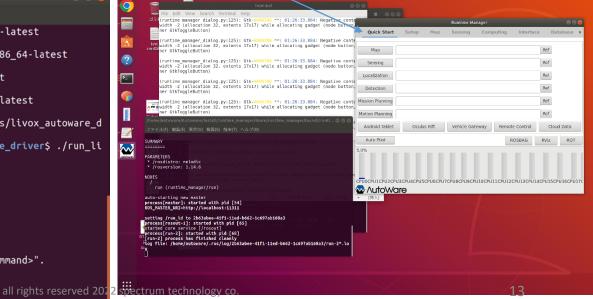
Dockerなどの設定に

/home/masa/Documents/lidar/livox autoware ws/livox au

\$ roslaunch runtime manager runtime manager.launch


ついては、設定編参照

マネジャ起動でok


コマンド入力

toware driver \$./run livox.sh

\$ cd

autoware@ubuntu2: /home/autoware

② Autoware基本: Rosbag記録、再生 Rosbag再生

Setup>Livoxを選択、TFを押す

Sensing>Livox lidarチェックを外すこと。二重表示になる。

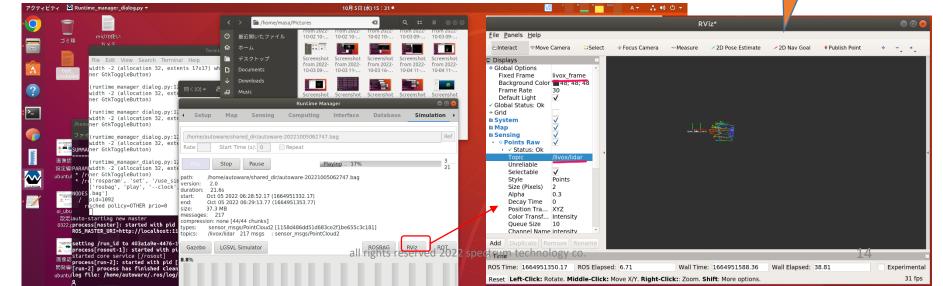
Simulation>Ref: autoware>shared_dir>autoware-20221005xxx.bagを選択

Playを押し、topics:sensor_msgs/pointclouds2が表示されていればokで、その後pause

Rvizタグ

global option>fixed frame:livox_frame

sensing>points raw>topic:/livox/lidarを選択


Simulation

pause外してplay又は、最初からplayでもok

録画した時間が下部に表示

Gpu未搭載だと 動かないかも

録画したlidar画像が出ればok

④ Autoware基本:地図作成

3D地図作成:ndt_mapping

Setup>Livoxを選択、TFを押す

Sensing>Livox lidarチェック

Rosbagでデータを記録、保存

computing > ndt_mapping

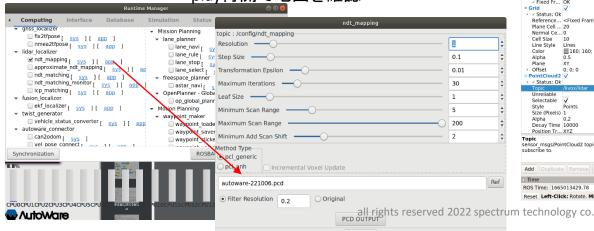
Simulation>rosbagのデータをplay, pause

Rvizタグ

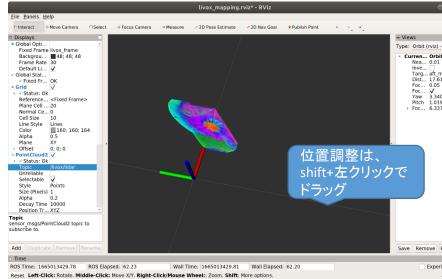
本来は、点群データをダウンサイズする機能がndt_mappingのappにはありますが、動作しません。他のツール等で実施が必要

File>open config:

/home/autoware/Autoware/src/drivers/awf_drivers/livox_ros_driver/livox_ros_driver/c


onfig/ livox_mapping.rviz を選択

global option>fixed frame:livox_frame


pointcloud2>:/livox/lidarを選択

Close

play再開で地図を確認

同じフォルダ内の ndt_mapping.rvizではうまく表 示しない。特にglobal option:mapの場合、不明

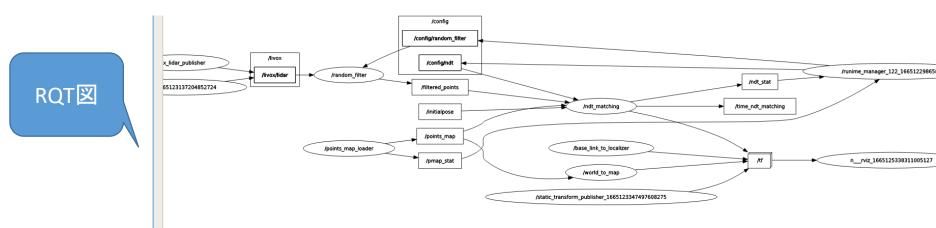
⑤ Autoware基本:自己位置推定

3D地図作成:ndt matching

Setup>Livoxを選択、TFを押す

map>refでpcdデータを選択し(100個等全て選択)、point cloudを押し、読み込む、TFも押す

Sensing>Livox lidarチェック、point downsample:random filterチェック


Computing>ndt_matchingをチェック、app:initial posをチェック

Simulation>rosbagのデータをplay, pause

Rvizタグ

fixed frame>map, map>points_map,sensing>filtered points:livox_frameとmapのリンクがないのでエラー

\$ rosrun tf2_ros static_transform_publisher 0 0 0 0 0 0 map livox_frame 別端末でリンク付けする play再開で地図とlidarのsensingの双方を確認

1 Livox_mapping

地図変換: SLAM (Simultaneous Localization And Mapping)に使用する地図作成ソフト

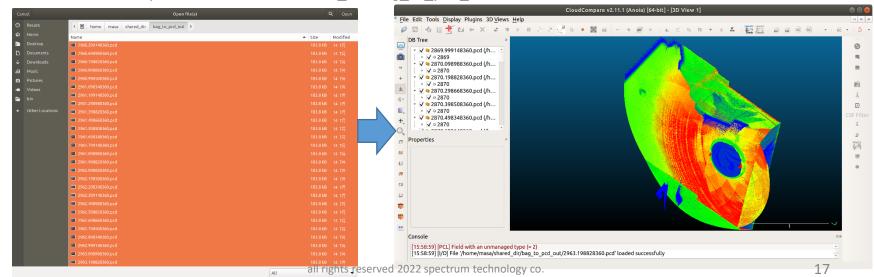
https://github.com/Livox-SDK/livox_mapping

起動

source /home/masa/Documents/lidar/catkin_ws/devel/setup.bash

端末毎に実施のこと

RosbagからPCDに変換


roscore coreを起動

rosrun pcl_ros bag_to_pcd test.bag /livox/lidar bag_to_pcd_out

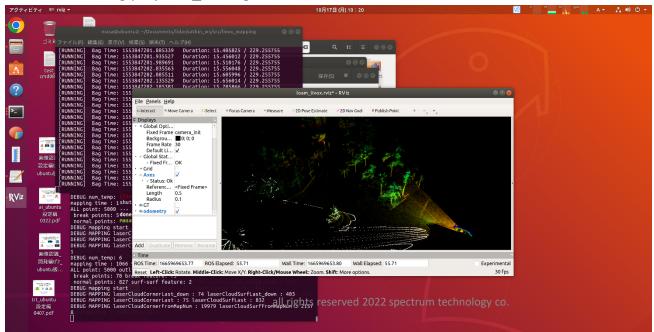
pcdの確認その1

Cloudcompareをアプリから起動

File>open: /home/masa/shared_dir/bag_to_pcd_out:全ファイル選択

1 Livox mapping

https://github.com/Livox-SDK/livox_mapping


SLAM (Simultaneous Localization And Mapping)に使用する地図作成ソフト 起動

source /home/masa/Documents/lidar/catkin_ws/devel/setup.bash

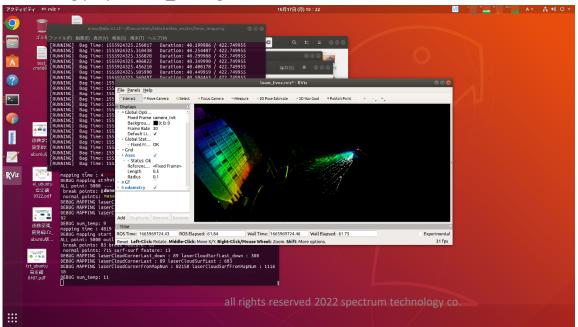
端末毎に実施のこと

デモ1

roslaunch livox_mapping mapping_mid.launch cd /home/masa/Documents/lidar/catkin_ws/src/livox_mapping rosbag play CYT_02.bag

1Livox mapping

https://github.com/Livox-SDK/livox_mapping


SLAM (Simultaneous Localization And Mapping)に使用する地図作成ソフト 起動

source /home/masa/Documents/lidar/catkin_ws/devel/setup.bash

端末毎に実施のこと

デモ2

roslaunch livox_mapping mapping_mid.launch cd /home/masa/Documents/lidar/catkin_ws/src/livox_mapping rosbag play HKUST_01.bag

2 cloudcompare

Pcdの点群データの加工、比較などを行うオープンソース

https://www.danielgm.net/cc/

https://hdtopography.github.io/learning/cloudcompare/CloudCompare.html 東大の人が解説

起動

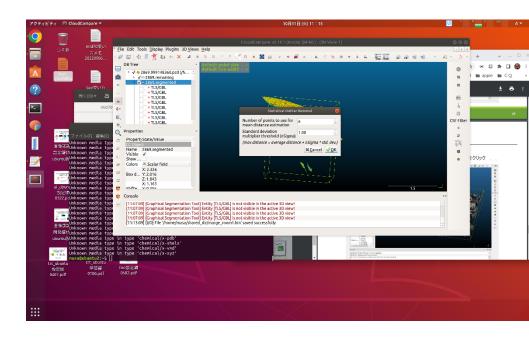
Cloudcompareをアプリから起動

File>open: /home/masa/shared dir/bag to pcd out:全ファイル選択:例

基本操作

セグメンテーション(切り出し、断面)

合成


ノイズ除去

リサンプリング

メッシュ化

クラウド間距離

Pcdから他の形式に変換:plyへ

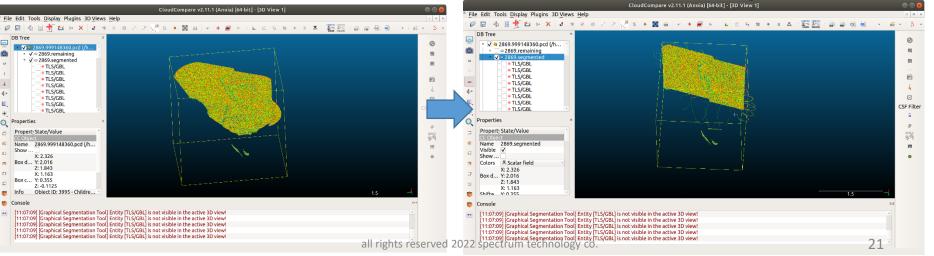
2 cloudcompare

Pcdの点群データの加工、比較などを行うオープンソース

https://www.danielgm.net/cc/

https://hdtopography.github.io/learning/cloudcompare/CloudCompare.html 東大の人が解説 起動

Cloudcompareをアプリから起動


File>open: /home/masa/shared_dir/bag_to_pcd_out:全ファイル選択:例

基本操作

セグメンテーション(切り出し、断面)

- セグメンテーションする前に読み込んだ、pcdの複数ファイルをマージします。
- 切り出し:上のはさみのアイコンで、エリアを左クリック、で選択して切り出し。終了は右クリック

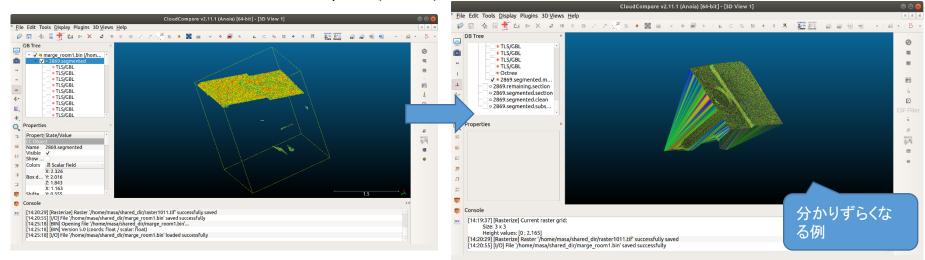
アイコンの√マークでセグメントが行われ、ファイルができます。remainingもできます。

2 cloudcompare

Pcdの点群データの加工、比較などを行うオープンソース

https://www.danielgm.net/cc/

https://hdtopography.github.io/learning/cloudcompare/CloudCompare.html 東大の人が解説 起動


ころ Cloudcompareをアプリから起動

File>open: /home/masa/shared_dir/bag_to_pcd_out:全ファイル選択:例

基本操作

メッシュ化:点群を3角形で結んで面の集合体で分かりやすくします。(点群のデータによります)

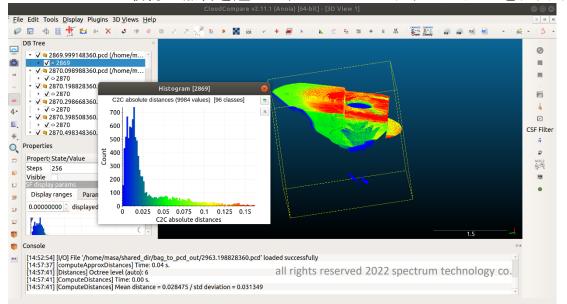
• Edit>mesh: Delaunay 2.5D(best fit)

2 cloudcompare

Pcdの点群データの加工、比較などを行うオープンソース

https://www.danielgm.net/cc/

https://hdtopography.github.io/learning/cloudcompare/CloudCompare.html 東大の人が解説 起動


Cloudcompareをアプリから起動

File>open: /home/masa/shared_dir/bag_to_pcd_out:全ファイル選択:例

基本操作

クラウド間距離:ふたつの点群を選んで、距離を測定,二つ目はCTL+左クリックで選択

- Tools>distance>cloud to cloud
- 最初の点群を選んで、右上のヒストグラムアイコンをクリック

X軸:distanceの単位 はmm? 誤差の分布が分かり ます

(1) Livox detection sim

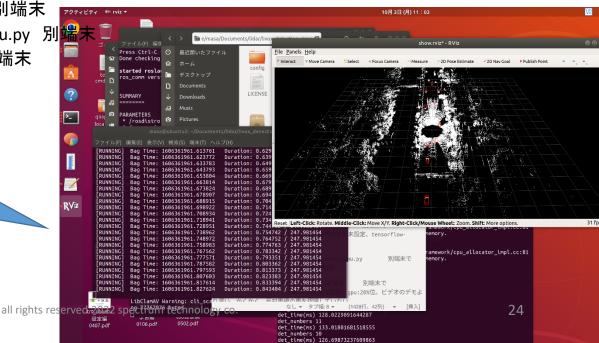
https://github.com/Livox-SDK/livox detection simu

車を検知するデモ

起動

source /home/masa/Documents/lidar/catkin_ws/devel/setup.bash

端末毎に実施のこと


デモ

roscore

cd /home/masa/Documents/lidar/livox_detection_simu

rviz -d ./config/show.rviz 別端末 python livox_detection_simu.py 別端末 rosbag play *.bag -r 0.1 別端末

Tensorflow-gpuで設定したが 遅い??不明

4 Livox free space

https://github.com/Livox-SDK/livox_free_space 駐車場の空きを検知 起動

source /home/masa/Documents/lidar/catkin_ws/devel/setup.bash

デモ

roslaunch livox_free_space livox_free_space.launch cd /home/masa/Documents/lidar/catkin_ws/src/livox_free_space/data

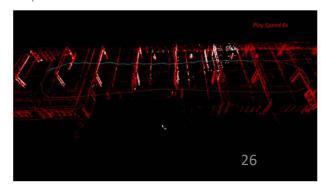
rosbag play demo.bag 別端末で Lidarを動作させて表示させる場合 roslaunch livox ros driver livox lidar.launch

5 Livox relocalization

https://github.com/Livox-SDK/livox relocalization

作成した地図で自動運転し、車線追尾するデモ 地図ファイル設定変更

cd /home/masa/Documents/lidar/catkin_ws/src/livox_relocalization/launch/livox_relocalization.launch map_file_pathのvalue変更 /home/masa/Documents/lidar/catkin_ws/src/livox_relocalization/map


起動

source /home/masa/Documents/lidar/catkin ws/devel/setup.bash

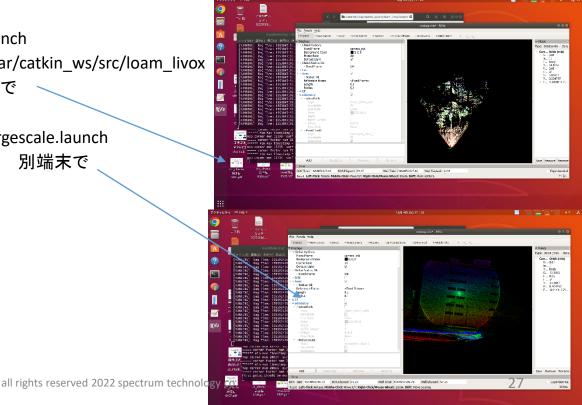
デモ

roslaunch livox_relocalization livox_relocalization.launch
cd /home/masa/Documents/lidar/catkin_ws/src/livox_relocalization
rosbag play mid40_re_example.bag 別端末で

· Line track example:

7 loam_livox

https://github.com/Livox-SDK/loam_livox


LiDAR Odemetry and Mapping (LOAM)でリアルタイムに地図作成し、自分の位置を特定する。 起動

source /home/masa/Documents/lidar/catkin_ws/devel/setup.bash

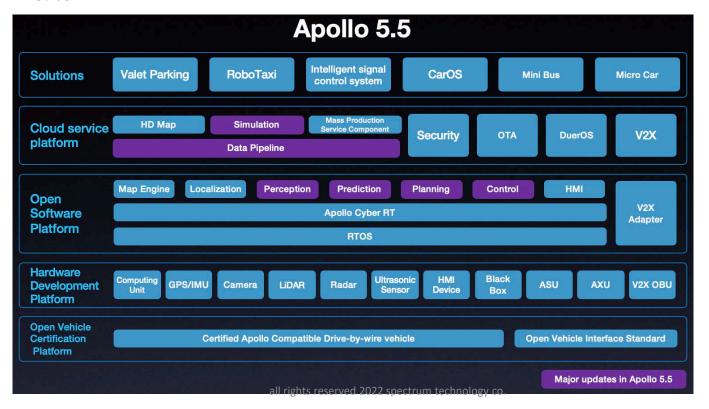
デモ

roslaunch loam_livox rosbag.launch
cd /home/masa/Documents/lidar/catkin_ws/src/loam_livox
rosbag play CYT_02.bag 別端末で

roslaunch loam_livox rosbag_largescale.launch rosbag play HKUST_01.bag 別端末で

9 apollo

baiduなどが推奨している中国版の自動運転

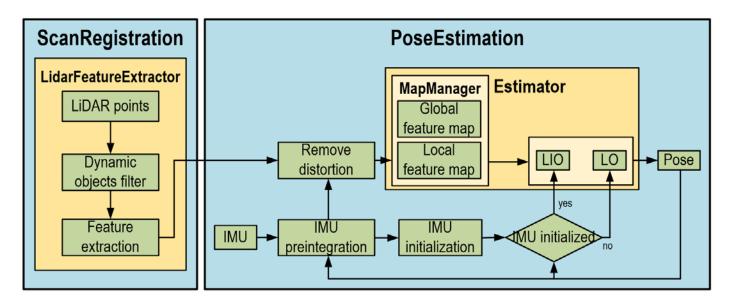

https://github.com/Livox-SDK/apollo

https://www.apollo.auto/

https://github.com/ApolloAuto/apollo

全体像

中国国内にしか公開されていない情報もあり。 最新のv7.0ではlivoxが動作しません。V5.5を推奨


① Lio_livox

LiDAR-Inertial Odometry: 慣性オドメトリを用いて移動ロボットの軌跡推定と地図作成をリアルタイムで実現するフレームワーク

https://github.com/Livox-SDK/LIO-Livox

livox horizon、Hap lidarのみ対応、mid-70はlivox-mappingを使用のこと。

未検証

