

sales@spectrum-tech.co.jp

ST Spectrum Technology

学習キット 目次

• ubun	tu運用	用マニュアル		ページ	
• u	buntu	について		4	
• L	inux基	本コマンド		4	
• u	buntu	基本操作		<u>6</u>	
• E	3常運	用(ウイルススキャン、	更新)	<u>7</u>	
• 学習	キット	概念図		<u>9</u>	
• 学習	キット	全体像		<u>10</u>	
• /\	ド概要	2		<u>11</u>	抜粋版のため日次
・ソフト	·概要			<u>12</u>	は一致しません
• TAO t	ool ki	it			
1.	概	要			
	1	概要		<u>13</u>	
	2	利用方法		<u>13</u>	
	3	概念図		<u>14</u>	
	(4)	アプリー覧		<u>15</u>	
2.	事	可準備と 使い方		<u>16</u>	
3.	事	列:物体認識			
	(1)	DetectNet_V2		<u>18</u>	
	(2)	FasterRCNN		<u>34</u>	
	(3)	SSD		<u>37</u>	
	(4)	YOLOV3		<u>40</u>	
	(5)	YOLOV4		<u>43</u>	
	(6) (1)	yolo_v4_tiny		<u>46</u>	
	\bigcirc	KetinaNet		<u>49</u>	
	Ø	Efficientaet		<u>52</u>	
	9	0220	all rights reserved 2022 spectrum technology co.	<u>55</u>	2

学習キット 目次

• TAO tool kit 概要 1. <u>13</u> 事前準備と使い方 <u>16</u> 3. 事例:物体認識 <u>18</u> 事例:セグメンテーション 4. (1) MaskRCNN **58** (2) UNET 61 個別事例 5. (12)action recognition net <u>64</u> (13) 67 Bpnet (14) <u>70</u> image classification (15) 73 Emotionnet (16) <u>76</u> Facenet (1)<u>79</u> Fpenet (18)Gazenet <u>82</u> (19) Gesturenet <u>85</u> 20 <u>88</u> Heartratenet <u>91</u> 21 Lprnet multitask classification 22 94

抜粋版のため目次 は一致しません

Ubuntu運用マニュアル

ubuntu®

- 1. Ubuntuについて Linuxの中でも一番シェアの高いOSです。2004年にDebian系から派生。
- 2. Linux基本コマンド
 - ① システム関係
 - 起動:電源を入れると自動で起動します。
 - 再起動:\$ reboot

又は、左上のメニューの「ゲストを再起動

- 終了: \$ shutdown
 又は、左上のメニューの「ゲストをシャットダウン」
- ログアウト \$ exit

ルートからログアウトします

•日本語/英語の入力切替:半角/全角のボタン(ESCボタンの下)

ST Spectrum Technology

Ubuntu運用マニュアル

ubuntu®

2. Linux基本コマンド ② ディレクトリ操作、コピー、移動、削除 masa@ubuntu:~\$cd /home/masa/Documents ディレクトリの切り替え masa@ubuntu :/home/masa/Documents\$ ls ファイルとディレクトリの表示(表示したら操作したいファイルを右クリック でコピペして操作します masa@ubuntu:~\$ cp ファイル名 ディレクトリ 配下のディレクトリのファイルを別のディレクトリへコピー masa@ubuntu:~\$ mv ファイル名 ディレクトリ 配下のディレクトリのファイルを別のディレクトリへ移動 masa@ubuntu:~\$ rm ファイル名 ファイルの削除 便利な機能 てのコマンド共通(マイナスを2個とhelp) コマンドのオプションが分からない場合は、ヘルプで問い合わせる。すべ ③ ユーザ権限、プロセス他 スーパーユーザ(root)に切り替え、パスワードを入力 masa@ubuntu :~ \$ su -ルート権限で各種コマンドを実施します。 masa@Ubuntu:~\$ sudo 現状の動いているプロセスを表示 masa@ubuntu:~\$ ps a 特定のプロセスを強制終了 masa@ubuntu:~\$ kill パッケージのインストールなどに使用 masa@ubuntu:~\$ apt-get install pkg masa@ubuntu:~\$ date 日付、時間の設定を行います。 masa@ubuntu:~\$ leafpad /etc/network/interfaces インタフェースに記述してい内容を変更します。Viよりも使いや すいです。 モジュール、usb、メモリ、HDDなどの表示 linuxのモジュールリスト表示 masa@ubuntu:~\$ lsmod masa@ubuntu:~\$ lsusb usbのデバイス表示 masa@ubuntu:~\$ free --mt メモリ使用状態表示 masa@ubuntu:~\$ df HDD(マイクロSD)の使用状態表示

ubuntu®

基本操作
 ① 表示画面と内容

主に使用するもの
・ブラウザ: Chrome
・フォルダ: Document
s内に必要なファイル
があります。
・コマンド: コマンド画面
を立ち上げて、
python3のプログラム
を動作させます。

ST Spectrum Technology

Ubuntu運用マニュアル

ubuntu®

- 4. 日常運用
 - ① セキュリティ対策(アンチウイルス更新、スキャン)
 - アンチウイルス対策として無料のclamAVをインストールしてます。
 - 手動での運用を基本としてます。

masa@ubuntu: ~	
ファイル(F) 編集(E) 表示(V) 検索(S) 端末(T) ヘルプ(H)	パターンファイル更新
<pre>masa@ubuntu:~\$ sudo freshclam Fri Jul 12 09:58:58 2019 -> ClamAV update process started 2019 Fri Jul 12 09:58:58 2019 -> ^Your ClamAV installation is C Fri Jul 12 09:58:58 2019 -> ^Local version: 0.100.3 Recomm Fri Jul 12 09:58:58 2019 -> DON'T PANIC! Read https://www. pgrading-clamav Fri Jul 12 09:58:58 2019 -> main.cvd is up to date (versio f-level: 60, builder: sigmgr) Fri Jul 12 09:58:58 2019 -> daily.cld is up to date (versio 19, f-level: 63, builder: raynman) Fri Jul 12 09:58:58 2019 -> bytecode.cvd is up to date (versio f-level: 63, builder: neo) masa@ubuntu:~\$ sudo clamscaninfectedremoverecursio</pre>	\$ sudo freshclam 手動スキャン時にも更新されます 手動でスキャン \$ sudo clamscaninfectedremoverecursive 自動化可能ですが、バックグランドで重くなる可 能性大。コマンド入力後時間がかります。

ST Spectrum Technology

Ubuntu運用マニュアル

4. 日常運用

② インストール済パッケージの更新リスト、アップグレード

- Linuxの場合は、頻繁に更新が発生します。アップグレードを定期的に実施してください。
- 更新前には、バックアップを取ることをお勧めします。特にアップグレードはまれに動作不良、戻せない状態が発生します。自己責任で実施してください。

	masa@ubuntu: ~	
ファイル(F) 編集(E) 表示(V) あ	検索(S) 端末(T) ヘルプ(H)	
^C		
masa@ubuntu:~\$ sudo apt-g	et update	
ヒット:1 http://jp.orchev	e.abanta.com/ubuntu bionic InRelease	
取得:2 http://jp.archive.	ubuntu.com/ubuntu bionic-updates InRelea	ase [88.7 kB]
無視:3 http://dl.google.	masa@ubuntu	
取得:4 http://jp.archive	masa@obonco	
無視:5 https://developer	ファイル(F) 編集(E) 表示(V) 検索(S) 端末(T) ヘルプ(H)	
tu1804/x86_64 InRelease	N: ターゲット CNF (main/cnf/Commands-all) は	/etc/apt/sources.list.d/google-chro
無視:6 http://developer.m	ne.list:3 と /etc/apt/sources.list.d/google.li	ist:1 で複数回設定されています
InRelease	nasa@ubuntu:~\$ sudo apt-get upgrade	
ヒット:7 https://develop	パッケージリストを読み込んています完了	
untu1804/x86_64 Release	衣仔関係ツリーを作成しています 	
ヒット:8 http://develope1	K態情報を読み取つています元」 マップグレードパッケージを捨出しています 一点	27
64 Release	リックシンレードバックーンを検出していより・・・ ガ い下のパッケージは保密されます・	5 J
ヒット:9 http://archive. ^	libol1-mesa-dri libxatracker2 mesa-va-drive	rs mesa-vdpau-drivers
ヒット:10 http://archive」	以下のパッケージはアップグレードされます:	
ヒット:11 http://dl.goog	firefox firefox-locale-en firefox-locale-ja	gnome-settings-daemon
取得:13 http://security.	gnome-settings-daemon-schemas libsysmetrics:	1 ubuntu-report
取得:16 http://security.	アップクレード:7個、新規インストール:0個、	削除: 0 個、保留: 4 個。
9 kB] 5	14.4 MB のアーカイノを取得する必要かめります。 この操作後に追加で すっすっしゃ のディスク容量が逃	当時されます
取得:17 http://security.	この採TF夜に迫加で 4,019 KB のナイスク谷里が汚 続行 キオか2 [v/b] v	月夏ごれより。
50 kB]	収得:1 http://ip.archive.ubuntu.com/ubuntu bi	onic-undates/main_amd64_gnome-setti
取得:18 http://security.	ngs-daemon-schemas all 3.28.1-Oubuntu1.3 [12.9	9 kB1
56 kB]	取得:2 http://jp.archive.ubuntu.com/ubuntu bio	onic-updates/main amd64 gnome-setti
n	ngs-daemon amd64 3.28.1-0ubuntu1.3 [316 kB]	
I	収得:3 http://jp.archive.ubuntu.com/ubuntu bio	onic-updates/main amd64 libsysmetri
C	s1 amd64 1.3.2 [1,475 kB] 现但 4 bbbs (/accurate bbs bbs bbs bbs bbs bbs bbs bbs bbs bb	
E	X177:4 NLLP://Security.ubuntu.com/ubuntu bion1 1 68 0+build3-0ubuntu0 18 04 1 [49_8 MB]	ic-security/main amd64 firefox amd6
	all rights reserve	ad 2022 spectrum technology co
		a zozz spectrum teennology co.

ubuntu®

更新リスト取得 \$ sudo apt-get update アップグレード実施 \$ sudo apt-get upgrade

ST Spectrum Technology 学習キット 概念図(TAO版)

* Coming Soon

** Formerly Transfer Learning Toolkit

ST Spectrum Technology 学習キット 全体像(TAO版)

ST Spectrum Technology ハードウエア概要 ①必要なハードウエア仕様

ハードウエアの概要です。

区分		プロダクツ	メーカ	備考		
USB メモリ (tao版)		512GB USB3.0 TAO 関連ソフト				
お客様準備品						
PC本体	сри	Intel i9, i7, amd Ryzen 9,7など 8 core cpu		GPUが搭載できるものに限り ます。		
	GPU	A100, V100 RTX30シリーズ	nvidia			
	メモリ	32GB以上				
	SSD	512GB以上		巨大なdatabaseをインス トールするため1TBが望ま しい		

ST Spectrum Technology 2.ソフトウエア概要 ①ソフトウェア一覧

ソフトウエアの概要です。

区分	ソフト名	バージョン	備考
OS	ubuntu	18.04.3 LTS	
GPU用	cuDNN	8.2.4+cuda11.4	Nvidia用,搭載するGPUに依存 本キットでは、コンテナで使用 するため参考
プログラム言語	python3	3.6.9	仮想化で使用
TAO	TAO tool kit	3.0.21.8	
コンテナ関連	Docker-ce	>19.03.5	
	nvidia-container-toolkit	>1.3.0-1	
	Nvidia-driver	>465	
AI用プログラム	tensorRT	8.4	
	tensorflow	1.15	Taoコンテナで使用
	Pytorch	1.8	
	onnx	1.8.1	
各種モジュール	Jupyter notebook、 matplotlibなど多数のpipラ イブラリ		

ST Spectrum Technology Tao toolkit

- 1. 概要
- ① 概要
 - お金をかけて AI の専門知識を習得しなくても、AI 開発ス ピードを 10 倍に加速できます。トレーニングをスピードアッ プして、精度の高い、高性能のドメイン別 AI モデルをすば やく作成できます。
 - ビジネスの課題を解決するための AI/ML モデルを一から作成するのは、お金と時間がかかります。転移学習は、学習済みの特徴量を、既存のニューラルネットワークモデルから新しいモデルに抽出するときによく使われる手法です。
 NVIDIA TAO Toolkit は AI/DL フレームワークの複雑さを抽象化する AI ツールキットです。高品質の学習済みモデルを使用するため、わずかな量のデータでも運用品質のモデルをすばやく構築できます。

開発スピードが 10 倍							
8週間 ∨	S. 80 週間						
データ収集、ラベル付けに数週間	データ収集、ラベル付けに数か月						
NVIDIA の学習済みで最適化されたモデルを使用	オープンソースの最適化されていない モデルを使用、または一からトレーニング						
最小限の調整とブルーニングで バフォーマンス目標を達成	モデルの調整とブルーニングに数か月						
DeepStreem SDK と Jarvis を デプロイ用に直接統合	ビデオ パイプラインに数週間でモデルをデプロイ						

② 利用方法

- TAOを使用すると、NVIDIAの運用品質の学習済みモデル をそのままデプロイするか、コンピュータービジョンや対話 型 AI などのさまざまなユースケースに合わせてモデルを微 調整して使用できます。TAO は、AI 作成のための UI ベース のガイド付きワークフロー、TAO (Train, Adapt and Optimize) プラットフォームの中核的なコンポーネントです。
- <u>https://docs.nvidia.com/tao/tao-toolkit/text/overview.html</u>

公式サイト https://developer.nvidia.com/ja-jp/tao-toolkit

ST Spectrum Technology TAO Toolkit 1. 概要 ④. アプリー覧

id	区分	アプリ名	概要	tao版	deepstream版 先頭数字は、目次、 二つ目が細分	
	1物体検出	DetectNet_V2	車、バン、トラック、歩行者、サイクリストのデータからresnet18の学習モデル を使って、検出対象を3個(車、サイクリスト、歩行者)に絞り、学習モデルを 作成。その後、prune,量子化などを使い、最終的にtensorRT用のモデルとし て出力。Taoで最初に使ったモデルに比べて、12倍に高速化し、正解率もほ ぼ同じを実現	•	●5_7	
	2	FasterRCNN	同上のデータセット、事前学習モデルで、Faster RCNNモデルで学習する。正 解率は、高いが、処理が遅い	•	●3_6	
	3	SSD	SSD(single shot detector)は、画像中の物体を単一のディープニューラルネットワークで検出する。一般には、認識精度も高く高速といわれているが?結果は、反対。	•	●3_5 deepstr	eam版のエ
	4	YOLOV3	darknetで有名なyolo、高速認識が売り	•	●3_7 ラーは、	、engine生
	5	YOLOV4	darknetで有名なyolo、高速認識が売り、新たな開発者が担当	•	成の問	顆 Tao-
	6	yolo_v4_tiny	darknetで有名なyolo、高速認識が売り、新たな開発者が担当、小型モデル 版(軽い)	•	convert	erのエラー
	7	RetinaNet	一般的には、2段階で検出していたものを、速度を維持したままで、精度が高い一段階検出モデルができないかと考え、RetinaNetが発表されました	•	不明	
	8	efficientdet	efficient detを使った物体認識	•		
	9	DSSD	deconvolutional single shot detector(DSSD)	•		
	10セグメンテーシ	ノヨン MaskRCNN	物体のセグメンテーションして、背景をマスクする。	▲エラー	●5_6	
	11	UNET	医療系の画像を使って、血管などをセグメンテーションする	•		
	12個別事例	action_recognition_net	ビデオから行動認識を行います	▲エラー	▲3_17エラー	
	13	bpnet	body pose netは、からだの目、耳、手首などの位置を検出します。	•		
	14	image_classification	物体の検出します	•	▲5_8エラー	
	15	emotionnet	感情分類	•	▲5_3エラー	
	16	facenet	顏検出	•		
	17	fpenet	顔の部位検出	•		
	18	gazenet	顔から視線を推測	•	▲5_4エラー	
	19	gesturenet	指の動作を検出	•	▲5_5エラー	
	20	heartratenet	心電図による推測	▲データ未入手		
	21	lprnet	ナンバープレートの文字認識	•	▲4_8エラー	
	22	multitask_classification	ファッション用品の分類	•		
	23	dashcamnet	車種、メーカ名などを識別		●4_3	
	24	FaceDetectIR	顏識別		●4_4	
	25	VehicleMakeNet	車種、メーカの認識		●4_5	
	26	vehicletypenet	車種の認識:クーペ、suv,ban		●4_6	
	27	PeopleNet-ResNet34	人認識:deepstreamer使用		•4_2	
	28	TrafficCamNet	車両認識:deepstreamer使用		•4_1	
	29	LPD	ナンバープレート検出		▲4_7エラー	
	30	Facial Landmark	顔の細部の位置を認識		●5_2	
	31	PeopleSegNet	人体セグメンテーション		●5_9	
	32	People Semantic Segmentation	人体セグメンテーション		•5_10	-
	33	2D Body Pose Estimation	2D人体のポーズ認識		•5_1 ¹	C
	34	imagedata-multistream	2画面ストリーミング		•2_12	
					-	

ST Spectrum Technology TAO Tool kit 2.事前準備と使い方

① python仮想環境

- 設定編で準備したvenv_py36で全て動作させます。
 \$ source /home/masa/venv_py36/bin/activate
 (venv_py36) masa@ubuntu2 :\$
- ② TAO tool kitの動作方法
 - •動作方法には以下の二つがあります。
 - <u>https://docs.nvidia.com/tao/tao-toolkit/text/tao_toolkit_quick_start_guide.html</u>
 - A) Jupyter notebook(推奨)
 - 基本的にjupyter notebookで動作させます。全体の流れがわかるので理解しやすいです。
 - B) Tao cli
 - Taoの個別コマンドを使って使用。
 - .tao_mounts.jsonを準備してから操作、jupyter notebookで解説しています。
 - \$ tao --help ヘルプコマンドで内容を確認
 - \$ tao list 動作中のtao コンテナを確認できます

入力コマンド \$ source /home/masa/venv_py36/bin/activate \$ tao --help

ST Spectrum Technology TAO Tool kit 3.事例:物体認識

- ① detectnet_v2:物体認識
 - 概要:車、バン、トラック、歩行者、サイクリストのデータからresnet18の学習モデルを使って、 検出対象を3個(車、サイクリスト、歩行者)に絞り、<u>detectnet</u> v2アルゴリズムを使い学習モ デルを作成。その後、prune,量子化などを使い、最終的にtensorRT用のモデルとして出力。 Taoで最初に使ったモデルに比べて、12倍に高速化し、正解率もほぼ同じを実現。
 - <u>https://docs.nvidia.com/tao/tao-toolkit/text/object_detection/detectnet_v2.html</u>

🛾 Spectrum Technology TAO Tool kit

- 3.事例:物体認識
- detectnet v2:物体認識

入力コマンド \$ \$ cd /home/masa/Documents/tao/cv samples v1.3.0/det ectnet v2 \$ jupyter notebook

- ・概要:車、バン、トラック、歩行者、サイクリストのデータからresnet18の学習モデ ルを使って、検出対象を3個(車、サイクリスト、歩行者)に絞り、学習モデルを作 成。その後、prune,量子化などを使い、最終的にtensorRT用のモデルとして出力。 Taoで最初に使ったモデルに比べて、12倍に高速化し、正解率もほぼ同じを実現。
- https://docs.nvidia.com/tao/tao-toolkit/text/object_detection/detectnet_v2.html
- データセット: kitti image
- 事前学習モデル: pretrained resnet18

ディレクトリは各自 違います

\$ cd /home/masa/Documents/tao/cv_samples_v1.3.0/detectnet_v2

(venv py36) masa@ubuntu2 :\$ jupyter no

detectnet_v2_2.ipynbを選択

: :S jupyter no	тероок			
	💭 Jupyter detectnet_v2_2 (auto	osaved)		n Logout
	File Edit View Insert Cell F	Kernel Widgets Help	No	t Trusted Python 3 (ipykernel) O
•	B + 3× 2 10 + ↓ ► Run I	C De 🗸 🖾		
11.1+	Object Detection	on using TAO DetectNet_v2	2	
	Transfer learning is the proce model trained on one task an	ss of transferring learned features from one application d re-train to use it on a different task.	on to another. It is a commonly used training te	chnique where you use a
_v2.ipyn _	Train Adapt Optimize (TAO) T data.	oolkit is a simple and easy-to-use Python based AI to	olkit for taking purpose-built AI models and cu	istomizing them with users' own
•		VISION AI	CONVERSATIONAL AI	
	NGC W	AT DAT	NO I UI*	
	Pre-trained models		DLKIT**	Custom Al Model
	Custom	Jupyter N	lotebooks	
	սխփոխ		Prune	
all rights reserved 2022 spe	ctrum technology co.	CUD NVIDIA Containers RT CUDA	A-X cuDNN TensorRT	18
0		TRAINING PLATFORMS	INFERENCE PLATFORMS	

ST Spectrum Technology TAO Tool kit 3.事例:物体認識

① detectnet_v2:物体認識

- ・概要:車、バン、トラック、歩行者、サイクリストのデータからresnet18の学習モデルを使って、検出対象を3個(車、サイクリスト、歩行者)に絞り、detectnet_v2アルゴリズムを使って学習モデルを作成。その後、prune,量子化などを使い、最終的にtensorRT用のモデルとして出力。Taoで最初に使ったモデルに比べて、12倍に高速化し、正解率もほぼ同じを実現。
- https://docs.nvidia.com/tao/tao-toolkit/text/object_detection/detectnet_v2.html

	C JUpyter detectnet_v2_2 (autosaved)
ジュリッジte det det ectnet_v2_2.ipynbを選択 く und	File Edit View Insert Cell Kernel Widgets Help Not Trusted Python 3 (pyternel) O P % On IN P Not Trusted P Not Trusted P
B + 3x Q B + ↓ ▶ Run ■ C ≫ Code ✓ B	
P ま と () L () () () () () () () () () () () () ()	<pre> in [2]: f #up the local directories to the TAO docker. import ison mounts.file = os.path.expanduser("\'.too_mounts.json")</pre>
Verv SPECS_DIR=/workspace/tao-experiments/specs all rights reserved 202	22 spectrum technology co. 19
# Showing list of specification files. 11s -rit \$LOGAL_SPECS_DIR	1. Install the TAO launcher
env: KEY=tlt_encode	The TAO launcher is a python package distributed as a python wheel listed in the nv idia-pyindex. Python index. You may install the launcher by executing the

ST Spectrum Technology TAO Tool kit 3.事例:物体認識

- ① detectnet_v2:物体認識
 - 概要:車、バン、トラック、歩行者、サイクリストのデータからresnet18の学習モデルを使って、検出対象を3個(車、サイクリスト、歩行者)に絞り、学習モデルを作成。その後、prune,量子化などを使い、最終的にtensorRT用のモデルとして出力。 Taoで最初に使ったモデルに比べて、12倍に高速化し、正解率もほぼ同じを実現。
 - <u>https://docs.nvidia.com/tao/tao-toolkit/text/object_detection/detectnet_v2.html</u>
 - detectnet_v2_2.ipynbを選択

ST Spectrue Technology TAO Tool kit 3.事例:物体認識

- ① detectnet_v2:物体認識
 - 概要:車、バン、トラック、歩行者、サイクリストのデータからresnet18の学習モデルを使って、検出対象を3個(車、サイクリスト、歩行者)に絞り、学習モデルを作成。その後、prune,量子化などを使い、最終的にtensorRT用のモデルとして出力。 Taoで最初に使ったモデルに比べて、12倍に高速化し、正解率もほぼ同じを実現。
 - https://docs.nvidia.com/tao/tao-toolkit/text/object_detection/detectnet_v2.html
 - detectnet_v2_2.ipynbを選択
 - 認識率と推定時間の各モデル別推移

Tao当初 評価結果	tao平均推論時間 (sec):①	prune後の再学習結果	量子化後の評価結果	tensorRT後の評価結果	tensorRT後の平均 推論時間(sec):②	高速化倍 率:①/②	tao学習、 prune後 再学習時 間の合計 (hour)
class name average precision (in %) car 79.5795 cyclist 80.3184 pedestrian 65.9508	0.005441	class name average precision (in %) car 80.2562 cyclist 81.5315 pedestrian 65.9992	class name average precisior (in %) car 75.3572 cyclist 77.1818 pedestrian 65.6729	class name average precision (in %) car 74.9865 cyclist 77.9812 pedestrian 66.0452	0.000436	12.48	3 4
						-	

取例の推跚より、

ST Spectrum Technology TAO Tool kit 4.事例:セグメンテーション

① unet:セグメンテーション

- 概要:医療系の画像を使って、血管などをセグメンテーションする。Unet_isbiを参照
- <u>https://docs.nvidia.com/tao/tao-toolkit/text/semantic_segmentation/unet.html</u>
- データセット: isbi
- 事前学習モデル: pretrained_resnet50

ST Spectrum Technology TAO Tool kit 4.事例:セグメンテーション

unet:セグメンテーション (11)

- 概要:医療系の画像を使って、血管などをセグメンテーションする。Unet isbiを参照
- https://docs.nvidia.com/tao/tao-toolkit/text/semantic segmentation/unet.html
- データセット: isbi
- 事前学習モデル: pretrained resnet50

\$ cd /home/masa/Documents/tao/cv samples v1.3.0/unet (venv py36) masa@ubuntu2 :\$ jupyter notebook A 63 × 4 A unet isbi2.ipynbを選択 Jupyterの各処理は省略

Learning Objectives

- In this notebook, you will learn how to leverage the simplicity and convenience of TAO to:
- Take a pretrained resnet18 model and train a ResNet-18 UNet model on the ISBI datase

· Run Inference on the trained model and visualize the inferences

23

Python 3 (invkernel) C

入力コマンド \$ cd /home/masa/Documents/tao/cv samples v1.3.0/unet \$ jupyter notebook

ST Spectrum Technology TAO Tool kit 4.事例: セグメンテーション

入力コマンド \$ cd /home/masa/Documents/tao/cv_samples_v1.3.0/unet \$ jupyter notebook

① unet:セグメンテーション

- 概要:医療系の画像を使って、血管などをセグメンテーションする。Unet_isbiを参照
- <u>https://docs.nvidia.com/tao/tao-toolkit/text/semantic_segmentation/unet.html</u>

unet_isbi2.ipynbを選択

tao当初評価結果	tao平均推論時間(sec): ①	prune後の再学習結果	量子化 後の評 価結果	tensorRT後の評価結 果	tensorRT後の 平均推論時間 (sec):②	高速化 倍率:① /②	tao学習、prune 後再学習時間の 合計(hour)
		Recall : 0.8249054551124573					
Recall : 0.8171335756778717	Throughput Avg: 75.287	Precision:					
Precision: 0.831825852394104	img/s Latency Avg: 48.422 ms	0.8128768801689148			10/10	4000 00	0 000000
F1 score: 0.8241343816116111	Latency 90%: 59.762 ms Latency 95%: 61.934 ms	F1 score: 0.8186391778106556	5		[00:00<00:00, 77961.04it/s]	1036.03	0.333333
Mean IOU: 0.7151066660881042	Latency 99%: 66.18 ms	Mean IOU: 0.7068162858486176					

- 13 BodyPoseNet
 - 概要:body pose netは、からだの目、耳、手首などの位置を検出します。
 - <u>https://docs.nvidia.com/tao/tao-toolkit/text/bodypose_estimation/bodyposenet.html</u>
 - データセット: coco
 - 事前学習モデル:bodyposenet_vtrainable_v1-2.0

\$ cd /home/masa/Documents/tao/cv_samples_v1.3.0/bpnet

(venv_py36) masa@ubuntu2 :\$ jupyter notebooker bpnet2 (wutoward)

bpnet2.ipynbを選択

Jupyterの各処理は省略,学習時間は、28時間

入力コマンド \$ cd /home/masa/Documents/tao/cv_samples_v1.3.0/bpnet \$ jupyter notebook

25

Transfer learning is the process of transferring learned features from one application to another. It is a commonly used training technique where you use a

all rights reserved 2022 spectrum technology

Learning Objectives

Bodypose Estimation using TAO BodyposeNet

① Fpenet

• 概要: 顔の部位(Eyes, Nose, Mouth, Eyebrows, Chin, HP, Pupil, Ears,)を検出します。

JUDYTEr fpenet2 Last Checkpoint: 2022/04/28 (autosaved)

- <u>https://docs.nvidia.com/tao/tao-</u> toolkit/text/facial_landmarks_estimation/facial_landmarks_estimation.html
- データセット: AFW
- 事前学習モデル:fpenet:trainable_v1.0

\$ cd /home/masa/Documents/tao/cv_samples_v1.3.0/fpenet (venv_py36) masa@ubuntu2 :\$ jupyter notebook Fiducial Points Estimation using TAO FPENet

(venv_py36) masa@ubuntu2 :\$ jupyt fpenet2.ipynbを選択 Jupyterの各処理は省略

Transfer learning is the process of transferring learned features from one application to another. It is a commonly used training technique where you use a model trained on one task and re-train to use it on a different task.

Train Adapt Optimize (TAO) Toolkit is a simple and easy-to-use Python based AI toolkit for taking purpose-built AI models and customizing them with users' own data.

In this notebook, you will learn how to leverage the simplicity and convenience of TAO to

入力コマンド \$ cd /home/masa/Documents/tao/cv_samples_v1.3.0/fpenet \$ jupyter notebook

Locour

Python 3 (ipykernel) (

Not Truste

(18) gazenet

- 概要: 顔から視線を推測。
- <u>https://docs.nvidia.com/tao/tao-toolkit/text/gaze_estimation/gaze_estimation.html</u>
- データセット: MPIIFaceGaze
- 事前学習モデル:gazenet:trainable_v1.0

\$ cd /home/masa/Documents/tao/cv_samples_y1.3.0/gazenet (venv_py36) masa@ubuntu2 :\$ jupyter notebook www.meet cell Kernel Widgets Help gazenet2.ipynbを選択

Jupyterの各処理は省略

Gaze Estimation using TAO GazeNet

Transfer learning is the process of transferring learned features from one application to another. It is a commonly used training technique where you use a model trained on one task and re-train to use it on a different task.

Train Adapt Optimize (TAO) Toolkit is a simple and easy-to-use Python based AI toolkit for taking purpose-built AI models and customizing them with users' own data.

Not Truste

Python 3 (ipykernel)

入力コマンド \$ cd /home/masa/Documents/tao/cv_samples_v1.3.0/gazenet \$ jupyter notebook

Learning Objectives

21 lprnet

- 概要:ナンバープレートの認識。
- <u>https://docs.nvidia.com/tao/tao-toolkit/text/character_recognition/lprnet.html</u>
- データセット: OpenALPR benchmark
- 事前学習モデル: pretrained_lprnet_baseline18

\$ cd /home/masa/Documents/tao/cv_samples_v1.3.0/lprnet

(venv_py36) masa@ubuntu2 :\$ jupyter notebook

lprnet2.ipynbを選択 Jupyterの各処理は省略

読み取り結果 wts-lg-000076.jpg:4GLS168 入力コマンド \$ cd /home/masa/Documents/tao/cv_samples_v1.3.0/lprnet \$ jupyter notebook

Python 3 (invkernel) (

US版

Learning Objectives